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ABSTRACT 

This works presents a design and development of Virtual Rotator 

Cuff Arthroscopic Skill Trainer (ViRCAST) and its preliminary 

subject study analysis using machine learning approach. 

Arthroscopy is a minimally invasive surgical intervention 

regarded as a part of orthopedic sub-specialty. The procedures are 

performed via small incisions in the patient’s skin to examine, 

diagnose and repair the injuries inside a joint [1]. Surgeons insert 

tiny instruments and small lens and lighting (called arthroscope) 

into the joint. They perform surgical intervention seeing the 

anatomy on a 2D monitor screen streamed from arthroscope.   

Due to non-natural hand-eye coordination, narrow field-of-view 

and limited instrument control, training for arthroscopy is 

challenging and difficult to master. In this work, we developed a 

primarily ViRCAST platform for training the shoulder 

arthroscopy procedures. We performed initial validation study 

using 10 surgery resident subjects (Post-Graduate Year (PGY) 1-

5) and performed statistical analysis to extract significant data 

features. This is followed with machine learning algorithms to 

cluster and classify the subject’s expert level with training data. 

Our results show that we could successfully distinguish the 

expertise level.   

CCS Concepts 

Human centered computing ➝ Human computer interaction 

(HCI) ➝Interactive systems and tools 

Computing methodologies ➝  Modeling and simulation ➝

Simulation evaluation. 

Keywords 

Surgical Simulator; Classification; Clustering; Validation Study 

1. INTRODUCTION 
Arthroscopy is a minimally invasive surgical intervention that is 

performed via small incisions at a joint [1]. Surgeons insert small 

surgical instruments and see the anatomy on a 2D monitor screen 

using arthroscope. Arthroscope is a fiber optic camera with 

accompanied with a rotatable light source. The arthroscopy has 

gained significant recognition over the years and become de facto 

and authentic procedure for the treatment of the various ailments 

such as bursitis, labral tears, repair and resection of torn cartilages 

(e.g. osteoarthritis) and ligaments, removal of inflamed synovial 

tissue, reconstruction of anterior cruciate ligament [2], [3]. It is 

commonly used especially in rotator cuff tear treatments. The 

rotator cuff is a group of muscles and tendons located in the 

shoulder that connects the humerus (upper arm) to the scapula 

(shoulder blade). The rotator cuff tendons and muscles provide 

stability and rotational motion of the shoulder. Each tendon of 

these muscles attaches to the humerus and extends to the scapula. 

These tendons create a cuff formation around the humerus. 

Rotator cuff tear is basically an injury of this cuff formation. 

Surgical solution is essential in order to eliminate the persistent 

symptoms [4].  

In arthroscopy, the surgeons need to assess and approach the 

rotator cuff from several different angles to fully delineate the tear 

pattern and then repair it anatomically. However, due to 
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unintuitive hand-eye coordination, narrow and confined field-of-

view and confined space for instrument control, training for 

arthroscopy is challenging and difficult to master. Conventional 

training regimen in surgery practice methods such as cadaver, 

plastic mannequin, and apprenticeship training are not inadequate. 

The use of animals is unethical and anatomical differences reduce 

its fidelity. Cadavers are costly and mostly limited to single use. 

Plastic mannequins are unrealistic and can be used for only certain 

type of surgeries. Likewise, physical bench models can be useful 

for arthroscope navigation and instrument handling, but they do 

not possess the realism to teach the surgeons the joint anatomy 

nor aid surgical decision-making [5]–[7]. There are prior efforts 

from both academia and industry (e.g. Insightmist, ARTHRO 

Mentor, VirtaMed ArthroS [8]–[10]) that aim to fill the gap in 

arthroscopy procedure training. Although some of these works 

have undergone human subject validation, they have limitations in 

providing realistic physics-based interaction with arthroscopic   

instruments, physical instrument interfaces, various difficulty 

settings for proficiency, photo realistic rendering, comprehensive 

performance and validation studies with extensive analysis for the 

entire or each arthroscopic surgery steps. We therefore proposed 

our ViRCAST platform that aims to deliver highly realistic 

arthroscopy training for shoulder with rigorous validation study 

involving human subjects. We developed preliminary surgery 

simulation with haptic feedback and performed validation study 

for arthroscope navigation task and shaving task.     

2. ViRCAST Design  
ViRCAST was developed using Software Framework for 

Multimodal Interactive Simulations (SoFMIS) [11], a highly 

customizable, multithreaded simulation framework. SoFMIS 

allows for a quick and modular approach to creating visually 

realistic simulations with easy integration for haptic devices, 

external interfaces such as Arduino or any data acquisition (DAQ) 

devices, and simplistic data recording. This framework allows for 

easy extension of modules contained within it simply by 

extending classes and providing a custom implementation to fit 

the developer’s current needs. Many aspects of the simulation, 

such as rendering, physics simulation, object properties, and scene 

environments are encapsulated, and in some respects abstracted 

from the developer for simplicity sake. We are in the process of 

porting the modules to the iMSTK (imstk.org) that is an open 

source and evolved and advanced version of SoFMIS that has 

been developed with multi-institutional efforts including 

Rensselaer Polytechnic Institute, University of Central Arkansas, 

and Kitware Inc.  

In ViRCAST, we have used Physically Based Rendering (PBR) 

approach for creating realistic scene. We used specific PBR 

textures, such as albedo, roughness, normal, metallic, and ambient 

occlusion maps to provide surface characteristic. Those 

parameters are used to calculate realistic lighting based on the 

main spotlight of the scene, which is positioned at the virtual 

arthroscopic camera. The bidirectional reflective distribution 

function (BRDF) is used to calculate the final look of the scene  

(see Figure 1) [12]. 

 

Figure 1 Arthroscopic view from ViRCAST. 

 It takes parameters such as the view direction, incoming light 

direction, and surface roughness and computes the light 

contribution to the final look of the model based on the surface 

roughness and reflectivity   parameters defined in the roughness 

and Metallic map. The 3D Zygote shoulder and custom models 

(e.g for bursa, rotator cuff muscles, additional ligaments etc) are 

used for the geometry. The textures of the models are completely 

recreated for PBR. We used forward rendering mechanism. Once 

the light computations are performed, we perform post processing 

iteration that is to enable depth of field, arthroscopy lens effect 

other image-based effects such as bubble generation (seen due to 

fluid in the shoulder). The alterations of 3D models are generated 

with geometry language to support various tear shapes, sizes and 

length [13], [14].        

In ViRCAST, the use of the actual arthroscope is important factor 

to mimic the real operator theater. We used 3DSystems Geomagic 

Touch haptic devices to control camera and tool movement in the 

virtual scene. To achieve true immersion, actual surgical tools that 

are used in the real surgery have been modified to work in 

conjunction with the haptic devices to give a better sense of 

realism for the user. An arthroscope was modified to house a 

Bournes EMS22A rotational encoder [15] to read the absolute 

rotation of the arthroscopic light source in order to accurately 

control the camera. The arthroscope is fixed to a haptic device 

with 3D printed adapters. A second encoder is also sued to control 

the camera rotation in the scene. This allows for natural 

movements and realistic control of the virtual arthroscope. 

Interactive physics simulation in ViRCAST is achieved using the 

NVidia PhysX library [16]. In ViRCAST, the tear model is 

created as a volumetric soft body.  This allows manipulation of 

the tear structure in real time. The surgeons could able to assess 

the tear type and evaluate it for diagnostic and repair procedures.  

We fixed the tear model at the shoulder blade for limiting its 

movement and flexibility to simulate realistic behavior. Our 

ViRCAST surgical platform with haptic devices and attached 

instruments of can be seen in Figure 2. Our simulation car can be 

adjusted for two most common arthroscopy positions such as 

beach chair and lateral decubitus positions [17].  
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Figure 2 ViRCAST simulation cart and simulation view 

adjusted for beach chair position in arthroscopy.  

3. VALIDATION STUDY  
We validated our simulator with human subjects at the University 

of Arkansas for Medical Science (UAMS) with approved IRB 

protocols numbers; 205864 and 239772. The study involved a 

total of 10 participants.  Prior to the beginning of designated task, 

the subjects were given a pre-questionnaire with questions about 

age, level of experience, hand dominance, etc. Following the 

questionnaire, the users were verbally told about the task. Each 

subject was given certain amount of time to get familiar with the 

task and ViRCAST environment. Then the subjects were expected 

to complete the landmark identification and shaving tasks without 

any certain time limit. Once the tasks were completed, the 

subjects were given a post-questionnaire with questions regarding 

the realism and effectiveness of the simulator as well as open-

ended questions for feedback on the simulator. 

3.1 Data sets  
For each participant, we recorded instrument positions in virtual 

scene distance units (mm), forces exerted forces on the anatomical 

structures in newton, arthroscope motions, virtual pin locations 

placed on anatomical structures and distance to the actual 

locations of anatomical structures, velocity(mm/s) and 

acceleration (mm/s2) of the tools (e.g. probe and shaver), shaved 

regions, shaving speed, and arthroscope motions, time to complete 

the task and its sub tasks (e.g. time for each landmark). We also 

post process data to compute measures for additional metrics [18]. 

These include average, mean, median velocity, jerk, turning angle 

in instrument motions, path length, soft body motion etc. We 

subdivide the subjects’ data intro two expertise level; expert and 

novices. Since the number of the number subjects are limited, we 

classify them based on the number of years attending such as 

PGY1-3 and PGY 4-5 and as a criterion.  This criterion was also 

determined after several runs of sample data clustering 

algorithms. 

4. METHODS 
In order to simplify the data analysis, reduce the computation time 

and increase the applicability of the well-studied 

clustering/classification algorithms, we first populate all the 

candidate features and then reduce feature size for further 

analysis. The initial feature set included the computed features as 

well. We then applied Welch’s T-Test to determine the most 

significant features that might find the distinction among the 

expertise level. The overall steps of the selection process can be 

seen in Figure 3.  

 

Figure 3. Feature reduction flow chart. 

As an output of our feature selection process, we determine that 

Mean Tool Velocity (mm/s), Std. Dev.  Jerk (Camera) (mm/s3), 

Std. Dev. Acceleration (Camera) (mm/s2), Std. Dev. Velocity 

(Camera) (mm/s), Mean Jerk (Camera) (mm/s3), Mean 

Acceleration (Camera) (mm/s2), Mean Velocity (Camera) (mm/s), 

Time Taken (seconds) (such as seen Figure 4) are the most 

important features (p < 0.05).  

We normalized the data set in order to compare the features 

between each other and eliminate the bias due to saturation in 

data. This is to improve the accuracy of the analysis (e.g. 

removing the large skew in data). We used SciKit Learn and its 

preprocessing modules for normalization and machine learning 

[19]. We employed three normalization methods such as Z-score, 

Min-max, and absolute value.  

We first tested to see if the clustering the data in two groups can 

be confirmed.  We used several metrics to quantify the clustering 

results, such as internal and external indices; Silhouette Score, 

Adjusted Rand Index, Fowlkes—Mallows Index, the Jaccard 

Score, and the Mutual Information Index. We further want to 

determine that classification of the data is attainable with the 

known pre-determined clusters. We used K-Nearest Neighbors (n 

= 2), Logistic Regression, and SVM with both linear and radial 

basis function (RBF) kernels and looked into the at the precision, 

recall, F1 score, and the average accuracy.  The data was then 

clustered and classified 100 times, with different test / train splits 

for the classification data, thus performing k-fold cross validation 

of the classifier performance.  
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Figure 4. Boxplots of selected features for arthroscope 

velocity, time taken for the tasks and tool mean velocity. 

 

5. RESUTS 
Based on survey questionnaires, expert group rated the realism of 

the 3D anatomical models as 4.2 out of 5 (likert scale) in average. 

They scored 4.4 out of 5 for the realistic visual rendering which is 

very critical for the landmark identification task. The anatomical 

correctness of the tear was noted high 4.2 as well. These results 

are derived from the post-questionnaire.   

Normalization of the data provided significant improvement over 

K-Means and Spectral clustering compared to data without 

normalization step. The highest accuracy is attained with the 

Agglomerative clustering. The best results are noted with 

Fowlkes-Mallows score index in all algorithms except the 

Agglomerative clustering. The score for each clustering algorithm 

can be seen in Figure 5 for absolute data. In the classification 

algorithms, we saw significant accuracy in the K-Nearest 

Neighbors algorithm. We were able to achieve up to 81% correct 

classification on the PGY 4-5, and up to 89% classification 

accuracy on the PGY 1-3, which can be seen in Figure 6.  

All of the classification algorithms worked very well for our case. 

It is noted that the classifiers seemed to work better with Z-Score 

standardization. In datasets, we can see the weakness of the RBF 

kernel of the SVM, due to a small dataset that experience over- or 

under-fitted the data.  

 

Figure 5. Clustering based on max absolute value normalized 

data 

 

Figure 6. Classfication accuracy based on max absolute value 

normalized data. 

The most prominent information that we derive is the difference 

in the movement between the left and right hand of the expert and 

novice groups. We identified significant differences in the tests on 

the use of the left hand. These results convey the experts have 

more mastery of ambidexterity than the novice surgeons. This is 

extremely important as the expectation from arthroscopist to use 

both hands efficiently. We also identified that experts were less 

concentrated on the movements of their non-dominant hand 

determined with turning angle and acceleration features. We 

might be related to the confidence. However, bigger sample size 

with more data is needed to verify this hypothesis,   

6. CONCLUSION 
In this work, we presented preliminary ViRCAST design and 

results of the case study which we performed to validate the 

effeteness of our simulator.  Our subject study was carried out 

among orthopedic surgery residents ranging from PGY1-5. Based 

on the post-questionnaire in the study, we determined that our 

simulator was found to be effective for arthroscope navigation 

task and landmark identification.  We employed clustering 
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algorithms over the simulator data to first understand that splitting 

of groups in expert and novice is feasible.  We later showed that 

the classification based on two clusters could provide successful 

results in understanding the skill level. As a future work, we plan 

to extend the study with more sample size and including 

additional classification techniques.     
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