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ABSTRACT

This works presents a design and development of Virtual Rotator
Cuff Arthroscopic Skill Trainer (ViRCAST) and its preliminary
subject study analysis using machine learning approach.
Arthroscopy is a minimally invasive surgical intervention
regarded as a part of orthopedic sub-specialty. The procedures are
performed via small incisions in the patient’s skin to examine,
diagnose and repair the injuries inside a joint [1]. Surgeons insert
tiny instruments and small lens and lighting (called arthroscope)
into the joint. They perform surgical intervention seeing the
anatomy on a 2D monitor screen streamed from arthroscope.
Due to non-natural hand-eye coordination, narrow field-of-view
and limited instrument control, training for arthroscopy is
challenging and difficult to master. In this work, we developed a
primarily VIRCAST platform for training the shoulder
arthroscopy procedures. We performed initial validation study
using 10 surgery resident subjects (Post-Graduate Year (PGY) 1-
5) and performed statistical analysis to extract significant data
features. This is followed with machine learning algorithms to
cluster and classify the subject’s expert level with training data.
Our results show that we could successfully distinguish the
expertise level.
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1. INTRODUCTION

Arthroscopy is a minimally invasive surgical intervention that is
performed via small incisions at a joint [1]. Surgeons insert small
surgical instruments and see the anatomy on a 2D monitor screen
using arthroscope. Arthroscope is a fiber optic camera with
accompanied with a rotatable light source. The arthroscopy has
gained significant recognition over the years and become de facto
and authentic procedure for the treatment of the various ailments
such as bursitis, labral tears, repair and resection of torn cartilages
(e.g. osteoarthritis) and ligaments, removal of inflamed synovial
tissue, reconstruction of anterior cruciate ligament [2], [3]. It is
commonly used especially in rotator cuff tear treatments. The
rotator cuff is a group of muscles and tendons located in the
shoulder that connects the humerus (upper arm) to the scapula
(shoulder blade). The rotator cuff tendons and muscles provide
stability and rotational motion of the shoulder. Each tendon of
these muscles attaches to the humerus and extends to the scapula.
These tendons create a cuff formation around the humerus.
Rotator cuff tear is basically an injury of this cuff formation.
Surgical solution is essential in order to eliminate the persistent
symptoms [4].

In arthroscopy, the surgeons need to assess and approach the
rotator cuff from several different angles to fully delineate the tear
pattern and then repair it anatomically. However, due to



unintuitive hand-eye coordination, narrow and confined field-of-
view and confined space for instrument control, training for
arthroscopy is challenging and difficult to master. Conventional
training regimen in surgery practice methods such as cadaver,
plastic mannequin, and apprenticeship training are not inadequate.
The use of animals is unethical and anatomical differences reduce
its fidelity. Cadavers are costly and mostly limited to single use.
Plastic mannequins are unrealistic and can be used for only certain
type of surgeries. Likewise, physical bench models can be useful
for arthroscope navigation and instrument handling, but they do
not possess the realism to teach the surgeons the joint anatomy
nor aid surgical decision-making [5]-[7]. There are prior efforts
from both academia and industry (e.g. Insightmist, ARTHRO
Mentor, VirtaMed ArthroS [8]-[10]) that aim to fill the gap in
arthroscopy procedure training. Although some of these works
have undergone human subject validation, they have limitations in
providing realistic physics-based interaction with arthroscopic
instruments, physical instrument interfaces, various difficulty
settings for proficiency, photo realistic rendering, comprehensive
performance and validation studies with extensive analysis for the
entire or each arthroscopic surgery steps. We therefore proposed
our VIRCAST nplatform that aims to deliver highly realistic
arthroscopy training for shoulder with rigorous validation study
involving human subjects. We developed preliminary surgery
simulation with haptic feedback and performed validation study
for arthroscope navigation task and shaving task.

2. VIRCAST Design

VIRCAST was developed using Software Framework for
Multimodal Interactive Simulations (SoFMIS) [11], a highly
customizable, multithreaded simulation framework. SoFMIS
allows for a quick and modular approach to creating visually
realistic simulations with easy integration for haptic devices,
external interfaces such as Arduino or any data acquisition (DAQ)
devices, and simplistic data recording. This framework allows for
easy extension of modules contained within it simply by
extending classes and providing a custom implementation to fit
the developer’s current needs. Many aspects of the simulation,
such as rendering, physics simulation, object properties, and scene
environments are encapsulated, and in some respects abstracted
from the developer for simplicity sake. We are in the process of
porting the modules to the iIMSTK (imstk.org) that is an open
source and evolved and advanced version of SoFMIS that has
been developed with multi-institutional efforts including
Rensselaer Polytechnic Institute, University of Central Arkansas,
and Kitware Inc.

In VIRCAST, we have used Physically Based Rendering (PBR)
approach for creating realistic scene. We used specific PBR
textures, such as albedo, roughness, normal, metallic, and ambient
occlusion maps to provide surface characteristic. Those
parameters are used to calculate realistic lighting based on the
main spotlight of the scene, which is positioned at the virtual
arthroscopic camera. The bidirectional reflective distribution
function (BRDF) is used to calculate the final look of the scene
(see Figure 1) [12].
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Figure 1 Arthroscopic view from ViRCAST.

It takes parameters such as the view direction, incoming light
direction, and surface roughness and computes the light
contribution to the final look of the model based on the surface
roughness and reflectivity —parameters defined in the roughness
and Metallic map. The 3D Zygote shoulder and custom models
(e.g for bursa, rotator cuff muscles, additional ligaments etc) are
used for the geometry. The textures of the models are completely
recreated for PBR. We used forward rendering mechanism. Once
the light computations are performed, we perform post processing
iteration that is to enable depth of field, arthroscopy lens effect
other image-based effects such as bubble generation (seen due to
fluid in the shoulder). The alterations of 3D models are generated
with geometry language to support various tear shapes, sizes and
length [13], [14].

In VIRCAST, the use of the actual arthroscope is important factor
to mimic the real operator theater. We used 3DSystems Geomagic
Touch haptic devices to control camera and tool movement in the
virtual scene. To achieve true immersion, actual surgical tools that
are used in the real surgery have been modified to work in
conjunction with the haptic devices to give a better sense of
realism for the user. An arthroscope was modified to house a
Bournes EMS22A rotational encoder [15] to read the absolute
rotation of the arthroscopic light source in order to accurately
control the camera. The arthroscope is fixed to a haptic device
with 3D printed adapters. A second encoder is also sued to control
the camera rotation in the scene. This allows for natural
movements and realistic control of the virtual arthroscope.
Interactive physics simulation in VIRCAST is achieved using the
NVidia PhysX library [16]. In VIRCAST, the tear model is
created as a volumetric soft body. This allows manipulation of
the tear structure in real time. The surgeons could able to assess
the tear type and evaluate it for diagnostic and repair procedures.
We fixed the tear model at the shoulder blade for limiting its
movement and flexibility to simulate realistic behavior. Our
VIRCAST surgical platform with haptic devices and attached
instruments of can be seen in Figure 2. Our simulation car can be
adjusted for two most common arthroscopy positions such as
beach chair and lateral decubitus positions [17].
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Figure 2 VIRCAST simulation cart and simulation view
adjusted for beach chair position in arthroscopy.

3. VALIDATION STUDY

We validated our simulator with human subjects at the University
of Arkansas for Medical Science (UAMS) with approved IRB
protocols numbers; 205864 and 239772. The study involved a
total of 10 participants. Prior to the beginning of designated task,
the subjects were given a pre-questionnaire with questions about
age, level of experience, hand dominance, etc. Following the
questionnaire, the users were verbally told about the task. Each
subject was given certain amount of time to get familiar with the
task and VIRCAST environment. Then the subjects were expected
to complete the landmark identification and shaving tasks without
any certain time limit. Once the tasks were completed, the
subjects were given a post-questionnaire with questions regarding
the realism and effectiveness of the simulator as well as open-
ended questions for feedback on the simulator.

3.1 Data sets

For each participant, we recorded instrument positions in virtual
scene distance units (mm), forces exerted forces on the anatomical
structures in newton, arthroscope motions, virtual pin locations
placed on anatomical structures and distance to the actual
locations of anatomical structures, velocity(mm/s) and
acceleration (mm/s?) of the tools (e.g. probe and shaver), shaved
regions, shaving speed, and arthroscope motions, time to complete
the task and its sub tasks (e.g. time for each landmark). We also
post process data to compute measures for additional metrics [18].
These include average, mean, median velocity, jerk, turning angle
in instrument motions, path length, soft body motion etc. We
subdivide the subjects’ data intro two expertise level; expert and
novices. Since the number of the number subjects are limited, we
classify them based on the number of years attending such as
PGY1-3 and PGY 4-5 and as a criterion. This criterion was also
determined after several runs of sample data clustering
algorithms.

4. METHODS

In order to simplify the data analysis, reduce the computation time
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and increase the applicability of the well-studied
clustering/classification algorithms, we first populate all the
candidate features and then reduce feature size for further
analysis. The initial feature set included the computed features as
well. We then applied Welch’s T-Test to determine the most
significant features that might find the distinction among the
expertise level. The overall steps of the selection process can be

seen in Figure 3.
Feature Data
Selection Normalization

Figure 3. Feature reduction flow chart.
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As an output of our feature selection process, we determine that
Mean Tool Velocity (mm/s), Std. Dev. Jerk (Camera) (mm/s®),
Std. Dev. Acceleration (Camera) (mm/s?), Std. Dev. Velocity
(Camera) (mm/s), Mean Jerk (Camera) (mm/s®), Mean
Acceleration (Camera) (mm/s?), Mean Velocity (Camera) (mm/s),
Time Taken (seconds) (such as seen Figure 4) are the most
important features (p < 0.05).

We normalized the data set in order to compare the features
between each other and eliminate the bias due to saturation in
data. This is to improve the accuracy of the analysis (e.g.
removing the large skew in data). We used SciKit Learn and its
preprocessing modules for normalization and machine learning
[19]. We employed three normalization methods such as Z-score,
Min-max, and absolute value.

We first tested to see if the clustering the data in two groups can
be confirmed. We used several metrics to quantify the clustering
results, such as internal and external indices; Silhouette Score,
Adjusted Rand Index, Fowlkes—Mallows Index, the Jaccard
Score, and the Mutual Information Index. We further want to
determine that classification of the data is attainable with the
known pre-determined clusters. We used K-Nearest Neighbors (n
= 2), Logistic Regression, and SVM with both linear and radial
basis function (RBF) kernels and looked into the at the precision,
recall, F1 score, and the average accuracy. The data was then
clustered and classified 100 times, with different test / train splits
for the classification data, thus performing k-fold cross validation
of the classifier performance.
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Figure 4. Boxplots of selected features for arthroscope
velocity, time taken for the tasks and tool mean velocity.

5. RESUTS

Based on survey questionnaires, expert group rated the realism of
the 3D anatomical models as 4.2 out of 5 (likert scale) in average.
They scored 4.4 out of 5 for the realistic visual rendering which is
very critical for the landmark identification task. The anatomical
correctness of the tear was noted high 4.2 as well. These results
are derived from the post-questionnaire.

Normalization of the data provided significant improvement over
K-Means and Spectral clustering compared to data without
normalization step. The highest accuracy is attained with the
Agglomerative clustering. The best results are noted with
Fowlkes-Mallows score index in all algorithms except the
Agglomerative clustering. The score for each clustering algorithm
can be seen in Figure 5 for absolute data. In the classification
algorithms, we saw significant accuracy in the K-Nearest
Neighbors algorithm. We were able to achieve up to 81% correct
classification on the PGY 4-5, and up to 89% classification
accuracy on the PGY 1-3, which can be seen in Figure 6.

All of the classification algorithms worked very well for our case.
It is noted that the classifiers seemed to work better with Z-Score
standardization. In datasets, we can see the weakness of the RBF
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kernel of the SVM, due to a small dataset that experience over- or
under-fitted the data.
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Figure 5. Clustering based on max absolute value normalized
data
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Figure 6. Classfication accuracy based on max absolute value
normalized data.

The most prominent information that we derive is the difference
in the movement between the left and right hand of the expert and
novice groups. We identified significant differences in the tests on
the use of the left hand. These results convey the experts have
more mastery of ambidexterity than the novice surgeons. This is
extremely important as the expectation from arthroscopist to use
both hands efficiently. We also identified that experts were less
concentrated on the movements of their non-dominant hand
determined with turning angle and acceleration features. We
might be related to the confidence. However, bigger sample size
with more data is needed to verify this hypothesis,

6. CONCLUSION

In this work, we presented preliminary VIRCAST design and
results of the case study which we performed to validate the
effeteness of our simulator. Our subject study was carried out
among orthopedic surgery residents ranging from PGY1-5. Based
on the post-questionnaire in the study, we determined that our
simulator was found to be effective for arthroscope navigation
task and landmark identification. We employed clustering



algorithms over the simulator data to first understand that splitting
of groups in expert and novice is feasible. We later showed that
the classification based on two clusters could provide successful
results in understanding the skill level. As a future work, we plan
to extend the study with more sample size and including
additional classification techniques.
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